

nbgrader Integration with JupyterHub and Kubernetes

Kevin Rong | Abigail Almanza | Lawrence Lee | Eric Li

Team KALE

Project Introduction Video

 Preface

Preface

This is the user guide for the nbgrader Integration with Jupyter Lab project. This document gives an overview of the problem and the solution proposed by this project, and explains how to install and maintain this project.

Intended Audience

This document is for system administrators who need to run nbgrader on a distributed set up like Kubernetes. Some background knowledge on how Kubernetes and JupyterHub works will be helpful when reading this documentation.

Text Conventions

N/A

Acknowledgments

Special thanks to Professor Nitta, Professor Moore, the UC Davis Jupyter Team, and Jupyter contributors for their support with this senior design project.

Related Documentation

	nbgrader: https://nbgrader.readthedocs.io/en/stable/

	JupyterHub: https://jupyterhub.readthedocs.io/en/stable/

	Kubernetes: https://kubernetes.io/docs/home/

	Zero to JupyterHub with Kubernetes https://zero-to-jupyterhub.readthedocs.io/en/latest/

 Project Overview

Project Overview

ngshare is a backend server for nbgrader [https://github.com/jupyter/nbgrader]’s exchange service.

[image: ngshare Logo][image: ../_images/code%20style-black-000000.svg]
 [https://github.com/psf/black][image: ../_images/ngshare.svg]
 [https://travis-ci.org/lxylxy123456/ngshare][image: ../_images/badge.svg]
 [https://codecov.io/gh/lxylxy123456/ngshare][image: Documentation Status]
 [https://ngshare.readthedocs.io/en/latest/?badge=latest]nbgrader [https://github.com/jupyter/nbgrader] is a Jupyter notebooks extension for grading running on JupyterHub, but it does not work well in distributed setup of JupyterHub like in Kubernetes, because the file systems exchange uses are not connected between containers.

To solve this problem, we are letting exchange to gather all information it needs from a set of REST APIs, which is implemented by ngshare.

Background

UC Davis JupyterHub will be used for course instruction. Students will be able to complete and submit assignments through JupyterHub and instructors can grade assignments. nbgrader will be used to add such functionality to UC Davis JupyterHub, but there are issues. When JupyterHub is deployed as a Kubernetes cluster, nbgrader is unable to automatically distribute and collect assignments since there isn’t a shared filesystem. Also, nbgrader is not compatible with JupyterLab, an improved version of the Jupyter Notebook frontend.

[image: System Architecture Diagram without ngshare]

Goals

	Create a JupyterHub service that allows nbgrader to work on a Kubernetes set up

	Create an nbgrader exchange plugin to enable the use of our service

	Provide good testing coverage of our service and plugin

	Package ngshare for easy installation through pip

	Write clear documentation to facilitate the maintenance of our service by the UC Davis Jupyter Team

	Port nbexchange extensions to JupyterLab

Features

	Sharing files between different Jupyter Notebook servers without relying on a
shared file system.

	Managing courses, instructors, and students for ngshare.

	Easy interface for administrators to debug ngshare database.

	Open source projects with continuous integration, code coverage, and online
documentation.

Future Application

Although this project is specifically built for nbgrader and Kubernetes, it can be ported to other container cluster managers like Docker Swarm and Apache Mesos, or even regular JupyterHub environments. The ngshare part of this project can be used as a template when developing other projects that require specialized sharing between containers.

 Installing

Installing

ngshare is designed to be installed on a Z2JH cluster, but you may install it without Kubernetes.

	Installing on a Z2JH Cluster
	Installing ngshare

	Installing ngshare_exchange

	Intalling in a Regular JupyterHub Environment as a Managed Service
	Installing ngshare

	Installing ngshare_exchange

	Intalling as an Unmanaged Service
	Installing ngshare

	Installing ngshare_exchange

 Installing on a Z2JH Cluster

Installing on a Z2JH Cluster

This guide assumes you already have a Kubernetes cluster with a persistent volume provisioner (which should be the case if you run Z2JH). You should also be familiar with installing Z2JH and using Helm.

If you prefer looking at examples instead, here’s [https://github.com/LibreTexts/ngshare/tree/master/testing/install_z2jh] a sample installation setup. It doesn’t demonstrate all the configurable options, though.

Installing ngshare

Installing the Helm Chart

ngshare is prepackaged into a Helm chart. You may add the repo like this:

helm repo add ngshare https://libretexts.github.io/ngshare-helm-repo/
helm repo update

Afterwards, create a config.yaml file to customize your helm chart. Here’s a bare minimum config.yaml file that assumes you’re installing ngshare into the same namespace as Z2JH, and that you only need 1GB of storage in total:

ngshare:
 hub_api_token: demo_token_9wRp0h4BLzAnC88jjBfpH0fa4QV9tZNI
 admins:
 - admin_username

The API token should be generated randomly and kept secret (if you omit it, one will be automatically generated for you).

Here’s a sample config.yaml file that contains the most commonly used options:

deployment:
 # Resource limitations for the pod
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 100m
 memory: 128Mi

ngshare:
 hub_api_token: demo_token_9wRp0h4BLzAnC88jjBfpH0fa4QV9tZNI
 # Please change the line below with the namespace your Z2JH helm chart is installed under
 # You can omit this value if you're installing ngshare in the same namespace
 hub_api_url: http://hub.your-z2jh-namespace.svc.cluster.local:8081/hub/api
 admins:
 - admin1
 - admin2

pvc:
 # Amount of storage to allocate
 storage: 1Gi

For a full list of configurable values, check here [https://github.com/LibreTexts/ngshare/blob/master/helmchart/ngshare/values.yaml].

You can now install ngshare using Helm:

For helm3
helm install ngshare ngshare/ngshare -f config.yaml
For helm2
helm install ngshare/ngshare -n ngshare -f config.yaml

If you didn’t install Z2JH in the default namespace, it is recommended to install ngshare in the same namespace as Z2JH by specifying --namespace your_namespace_name in helm install. Note that if you don’t put ngshare and Z2JH in the same namespace, you will have to modify the ngshare.hub_api_url value in your config to point to http://hub.your-z2jh-namespace.svc.cluster.local:8081/hub/api instead (replace your-z2jh-namespace with the namespace where Z2JH is installed).

After installation, Helm should give you some instructions on how to configure Z2JH.

Configuring Z2JH to Work with ngshare

The ngshare Helm chart should output something like this at the end of installation:

Congrats, ngshare should be installed!
To get started, add the following to your JupyterHub helm chart's values:

hub:
 extraConfig:
 ngshare.py: |
 c.JupyterHub.services.append({
 'name': 'ngshare',
 'url': 'http://ngshare.default.svc.cluster.local:8080',
 'api_token': '3VEgEzkhFkQsdZNI7zhnyMW6U0a2xsZq'})

Follow the instructions and add the code block to your Z2JH config.yaml. After you have updated Z2JH’s configuration using helm upgrade, you can verify the service is working as intended by logging into JupyterHub, clicking “Control Panel”, then “Services -> ngshare”. If you see the ngshare welcome page, you may proceed.

Installing ngshare_exchange

You should know how to customize the user environment using Dockerfiles [https://zero-to-jupyterhub.readthedocs.io/en/latest/customizing/user-environment.html] in Z2JH. For the clients to use ngshare, the exchange must be installed in every user pod.

ngshare_exchange only works with nbgrader version 0.7.0 or above. Unfortunately, that version is not yet released. You will have to install the latest nbgrader from GitHub first:

python3 -m pip install git+https://github.com/jupyter/nbgrader.git@5a81fd5
jupyter nbextension install --symlink --sys-prefix --py nbgrader
jupyter nbextension enable --sys-prefix --py nbgrader
jupyter serverextension enable --sys-prefix --py nbgrader

Afterwards, you may install ngshare_exchange:

python3 -m pip install ngshare_exchange

Finally, you need to configure nbgrader to use ngshare_exchange. This can be done by adding some code to nbgrader’s global config file, /etc/jupyter/nbgrader_config.py. The relevant code should be output by the helm install command earlier when you installed ngshare:

from ngshare_exchange import configureExchange
c=get_config()
configureExchange(c, 'http://ngshare.default.svc.cluster.local:8080/services/ngshare')
Add the following line to let students access courses without configuration
For more information, read Notes for Instructors in the documentation
c.CourseDirectory.course_id = '*'

Depending on your helm values and the namespace you install in, the URL will be different. Be sure to follow the code your helm install command outputs.

A sample singleuser Dockerfile that does all of the above is available on Github [https://github.com/LibreTexts/ngshare/tree/master/testing/install_z2jh/Dockerfile-singleuser].

If running nbgrader list doesn’t cause any significant errors, you have installed ngshare_exchange correctly. Please check Notes for Administrators and Notes for Instructors for more information on how to use ngshare. The students should be able to use nbgrader as normal without additional configuration.

 Intalling in a Regular JupyterHub Environment as a Managed Service

Intalling in a Regular JupyterHub Environment as a Managed Service

This guide assumes you already know how to set up a JupyterHub environment. You should also be familiar with adding JupyterHub-managed services [https://jupyterhub.readthedocs.io/en/stable/reference/services.html#hub-managed-services] into jupyterhub_config.py.

If you prefer looking at examples instead, here’s [https://github.com/LibreTexts/ngshare/tree/master/testing/install_jhmanaged] a sample installation setup. It doesn’t demonstrate all the configurable options, though.

Installing ngshare

First, you should install ngshare in the same environment as the hub.

python3 -m pip install ngshare

After it’s installed, you should tell JupyterHub to spawn ngshare as a managed service on startup. This can be done using something like this inside jupyterhub_config.py:

c.JupyterHub.services.append(
 {
 'name': 'ngshare',
 'url': 'http://127.0.0.1:10101',
 'command': ['python3', '-m', 'ngshare', '--admins', 'admin,admin2'],
 }
)

You may want to check the list of command line arguments for further configuration. JupyterHub will automatically spawn ngshare on port 10101 in this case.

After you restart JupyterHub, you can verify the service is working as intended by logging into JupyterHub, clicking “Control Panel”, then “Services -> ngshare”. If you see the ngshare welcome page, you may proceed.

Installing ngshare_exchange

ngshare_exchange only works with nbgrader version 0.7.0 or above. Unfortunately, that version is not yet released. You will have to install the latest nbgrader from GitHub first:

python3 -m pip install git+https://github.com/jupyter/nbgrader.git@5a81fd5
jupyter nbextension install --symlink --sys-prefix --py nbgrader
jupyter nbextension enable --sys-prefix --py nbgrader
jupyter serverextension enable --sys-prefix --py nbgrader

Afterwards, you may install ngshare_exchange:

python3 -m pip install ngshare_exchange

Finally, you need to configure nbgrader to use ngshare_exchange. This can be done by adding the following to nbgrader’s global config file, /etc/jupyter/nbgrader_config.py:

from ngshare_exchange import configureExchange
c=get_config()
Note: It's important to specify the right ngshare URL when not using k8s
configureExchange(c, 'http://127.0.0.1:10101/services/ngshare')

Add the following to let students access courses without configuration
For more information, read Notes for Instructors in the documentation
c.CourseDirectory.course_id = '*'

You will have to specify the right URL to ngshare inside configureExchange. This is usually http://ip:port/services/ngshare where ip is the hub’s IP and port is the port ngshare runs on. Make sure each user can access this endpoint.

If running nbgrader list doesn’t cause any significant errors, you have installed ngshare_exchange correctly. Please check Notes for Administrators and Notes for Instructors for more information on how to use ngshare. The students should be able to use nbgrader as normal without additional configuration.

 Intalling as an Unmanaged Service

Intalling as an Unmanaged Service

WARNING: This is for advanced configurations only. Unless you wish to run ngshare in a different environment than the hub, or have very specific proxying setups, you should not be using this guide.

This guide assumes you already have a JupyterHub environment setup. You will need to manage ngshare separately as a service, and ensure it and the hub can communicate with one another.

Installing ngshare

Mocking Required Environment Variables

ngshare gets some configurations from the hub via environment variables [https://jupyterhub.readthedocs.io/en/stable/reference/services.html#launching-a-hub-managed-service]. To run ngshare, you will need to mock these variables. You should at least set the following:

JUPYTERHUB_API_TOKEN should be a unique, secret token (such as one generated using openssl rand -hex 32). This should be the same token specified in JupyterHub’s config.

JUPYTERHUB_API_URL should point to the hub API, such as http://127.0.0.1:8080/hub/api. Make sure this endpoint is accessible to ngshare.

JUPYTERHUB_SERVICE_PREFIX is the prefix under which ngshare operates, with a leading and trailing slash. JupyterHub will proxy requests from /services/your-service-name/, so this is usually /services/ngshare/ if the service name is ngshare.

JUPYTERHUB_SERVICE_URL is the URL that ngshare should be accessible on. For example, if ngshare has IP 10.1.2.3 and you want ngshare to listen on port 1234, this should be http://10.1.2.3:1234. Changing this will affect ngshare’s port.

Running ngshare

After configuring the environment variables, you may start ngshare as a service. You should also take a look at the list of command line arguments for further configuration.

Configuring JupyterHub

Inside JupyterHub’s configuration Python script, add the following:

c.JupyterHub.services.append(
 {
 'name': 'ngshare',
 'url': 'http://ngshare-location:1234',
 'api_token': 'top-secret-api-token',
 }
)

Make sure the url field points to ngshare, and the api_token is the same one specified as an environment variable to ngshare.

After you restart JupyterHub, you can verify the service is working as intended by logging into JupyterHub, clicking “Control Panel”, then “Services -> ngshare”. If you see the ngshare welcome page, you may proceed.

Installing ngshare_exchange

This will be largely the same as installing ngshare as a managed service. You only need to ensure the ngshare URL in nbgrader_config.py is accessible by the spawned notebook servers.

 Uninstalling

Uninstalling

Uninstalling ngshare

If you installed ngshare using a helm chart, you can uninstall it there. Assuming your release is called ngshare:

helm3
helm uninstall ngshare

helm2
helm delete --purge ngshare

If you installed ngshare manually using pip, you may uninstall it there as well:

pip uninstall ngshare

Afterwards, be sure to also modify your Z2JH helm values or jupyterhub_config.py and remove ngshare as a service.

Please back up the database and user files before uninstalling, in case you need it. Read Notes for Administrators for more information.

Uninstalling ngshare_exchange

You may uninstall ngshare using pip:

pip uninstall ngshare_exchange

Be sure to modify the nbgrader_config.py file and remove references to ngshare_exchange, so you can continue using nbgrader normally.

 Upgrading

Upgrading

Upgrading ngshare

If you installed ngshare using a helm chart, upgrading is as simple as a helm upgrade:

helm repo update
assuming your release is called ngshare
helm upgrade ngshare ngshare/ngshare -f your_config.yaml

Please note that if during your first installation you didn’t specify an API token, the randomized API token will be regenerated every upgrade. Therefore, it’s highly recommended to specify the API token in your config.yaml.

If you aren’t using the helm chart and installed ngshare using pip, upgrade through pip:

pip install -U ngshare

Please back up the database before an update just in case. Read Notes for Administrators for more information on how ngshare upgrades affect the database.

Upgrading ngshare_exchange

ngshare_exchange should be installed as a pip package, so update is simple:

pip install -U ngshare_exchange

No further reconfiguration should be required, although it is recommended to restart all notebook servers after an update.

 Command Line Arguments

Command Line Arguments

Here’s a list of command line arguments you may specify when starting ngshare.

Regular Arguments

--database PATH_TO_DATABASE

Specify a custom database for SQLAlchemy. Defaults to sqlite:////srv/ngshare/ngshare.db. Note that using other types of databases (such as MySQL) is not tested.

--storage PATH_TO_STORAGE

Specify a folder to store user-uploaded files. Defaults to /srv/ngshare/files/.

--admins ADMIN1,ADMIN2,ADMIN3

Specify usernames of administrators separated by commas. Administrators may create courses and access any course.

Advanced Arguments

You should not be using these command-line arguments unless you know what you’re doing or have a very specific need (such as running ngshare as an external service).

--debug

Enable debug mode. This gives more helpful error messages and enables features like dumping the database. WARNING: Enabling this will leak private information, do NOT turn this on in production.

--no-upgrade-db

Do not use Alembic to automatically upgrade the ngshare database. This will cause ngshare to break after an update if the database schema has changed. Please check Notes for Administrators for more info.

--jupyterhub_api_url CUSTOM_API_URL

Override the JupyterHub API URL configured using the JUPUTERHUB_API_URL environment variable. You should only use this if you’re installing ngshare as an unmanaged service.

--prefix PREFIX

Override the default URL prefix configured using the JUPYTERHUB_SERVICE_PREFIX environment variable. Override the JupyterHub API URL configured using the JUPUTERHUB_API_URL environment variable. You should only use this if you’re installing ngshare as an unmanaged service.

--vngshare

Enable vngshare mode. Do not use in production.

--host BIND_HOST and --port BIND_PORT

Specify the host and port to bind to in vngshare mode only. To change the port ngshare binds to, please change the $JUPYTERHUB_SERVICE_URL environment variable instead.

 Extra Features

Extra Features

Welcome Page

GET /api/

A welcome page for the API, containing some sample uses of the API.

If you are an admin user or ngshare / vngshare is running in debug mode, you can see “Debug actions” (explained below).

Debug Actions

The debug actions are only available when debug mode is on or user is admin.

Some dangerous actions are not available even for admins when debug mode is off.

Dump Database

GET /api/initialize-Data6ase?action=dump

Dump the database content in JSON format.

Human Readable Format

GET /api/initialize-Data6ase?action=dump&human-readable=true&user=root

Dump the database content in human readable format. (Displayed with the help of Masonry.js [https://masonry.desandro.com/])

Clear Database

GET /api/initialize-Data6ase?action=clear

Remove the entire content of database (the currently logged-in user cannot be removed). Only available when debug mode is on.

Initialize with Test Data

GET /api/initialize-Data6ase?action=init

Initialize database with some pre-defined test data. Only available when debug mode is on.

Health Endpoint

GET /healthz

This always returns a single JSON object with {"success": true}. It can be used as a liveness probe to ensure ngshare is up and running.

vngshare

vngshare stands for Vserver-like Notebook Grader Share. It is similar to vserver [https://github.com/lxylxy123456/ngshare-vserver/] and allows easy testing.

To run vngshare, do the following:

	Install dependencies. pip3 install tornado jupyterhub sqlalchemy

	cd ngshare

	Run vngshare. python3 vngshare.py [--host <bind_IP_address> [--port <port_number>]]

vngshare will create a database at /tmp/ngshare.db. Though there is no file system API, unauthorized users can corrupt your data. You can test vngshare by running it with the default IP and port and executing pytest test_ngshare.py.

 Notes for Administrators

Notes for Administrators

Make sure to completely read and understand the following before putting ngshare into production.

Admin Users

Admin users are the only users who can create courses and assign instructors to them. This is to prevent unauthorized users from creating courses. All admins have full access to every course on ngshare, so keep this in mind when assigning admins. Courses can be created and managed using the ngshare-course-management tool that comes with ngshare_exchange.

User Name Reuse

In ngshare, all users (instructors and students) are identified using their username in JupyterHub. They are authenticated using the API token inside their notebook server. Be careful when reusing usernames in JupyterHub, as users with the same name will be identified as the same. We haven’t added functionality to rename or delete users in ngshare, so be sure not to delete a user and create a new one with the same name. If you do, you will have to manually edit the ngshare database to remove or rename that user.

Race Condition

ngshare should NOT be run concurrently, or there may be race conditions and data may be corrupted. For example, do not create multiple ngshare instances that share the same underlying database.

Storage

If you’re using the Helm chart, only 1GiB of storage is allocated by default. You may increase this limit by specifying pvc.storage in the Helm values. If ngshare returns 500 for requests, lack of storage space could be a reason.

Also, when courses or assignments are deleted, their corresponding files are not automatically deleted. You may want to delete these files to clean up storage. See the Removing Semantics section below for more info.

Database Upgrade

ngshare checks the database version every time it starts up. If the database version is older than the ngshare version, it performs schema and data migration.

Under normal circumstances, migrations only happen after ngshare is updated and the update involves changing the database structure. The ngshare database update log can be found in Migration with Alembic.

The check can be disabled using the command line argument --no-upgrade-db or the helm chart value ngshare.upgrade_db: false, but do not disable it unless you have a good reason and know the possible consequences.

Database Backup

ngshare users should regularly back up the database in case of corruption.

The database should be backed up before updating ngshare because the schema and data migration may corrupt the database.

When installed using Helm, the database and all uploaded files are stored in a PVC usually called ngshare-pvc (or yourreleasename-pvc). You can back up everything in that volume.

When installed manually using pip, you should have configured where the database is using command line arguments. If not, the database and all uploaded files should be in /srv/ngshare.

Removing Semantics

Removing something (e.g. assignment, course) in ngshare will remove relevant objects and relations in database, but the actual files are NOT removed from the storage path.

If storage space is a problem, the administrators can dump the database and remove files from the file system that are not referenced by the database.

Internal Server Error

Users may receive 500 Internal Server Error in some extreme cases, for example:

	Database or storage path has incorrect permission, or disk is full.

	There are too many files (probably more than \(10^{18}\)) created and
causes Version 4 UUID collision in json_files_unpack().

Limitations

	ngshare cannot run concurrently, which may be a bottleneck if too many users
are using this service.

	ngshare stores all uploaded files in one directory. This may create
performance issues when there are too many files uploaded.

	Currently, there are no limits on user uploads (e.g. file size, number of
files).

	Admin user names cannot contain “,” (comma sign).

	User names are not designed to be interchangeable between students.

 Notes for Instructors

Notes for Instructors

Make sure to read the following to understand how to manage courses with ngshare.

Course Creation

Only the administrators can create courses due to security concerns. Please contact your system administrator if you want to create a course. After they assign you as an instructor, you may manage the course roster and add more students to the course yourself.

Managing Students

Please use the ngshare-course-management tool when adding / removing students from a course. Do not use Formgrader’s interface to add students, since this does not update ngshare.

Configuring nbgrader

By default, nbgrader needs a config file that specifies a single course under c.CourseDirectory.course_id. However, the special course ID * may be used to specify all available courses. This should be enabled by default by the administrator. If this isn’t the case, you and all of your students must create a file called nbgrader_config.py in their home directories with the following contents:

c.CourseDirectory.course_id = 'mycourseid'

Replace mycourseid with the ID of the course. Afterwards, restart the notebook server by clicking “Control Panel” on the main interface, then clicking “Stop Server” and then “Start Server”.

Using Formgrader

Formgrader does not support multiple classes, so you have to tell it which class you’re currently teaching by explicitly specifying a course ID in nbgrader_config.py as mentioned above. The course ID may not be *. If you see an error when releasing the assignment about ngshare endpoint /assignments/* returned failure: Course not found, you haven’t specified a course ID explicitly.

If you’re teaching several different courses, you will have to change nbgrader_config.py and use Formgrader to manage them one course at a time. You will have to restart your notebook server every time.

Students are not subject to this problem and can submit their assignments without a nbgrader_config.py file in their home directory if c.CourseDirectory.course_id = '*' is specified globally in /etc/jupyter/nbgrader_config.py.

 Course Management

Course Management

To manage students in your course, please don’t use formgrader’s web interface since it doesn’t use ngshare. Instead, use the ngshare-course-management command that gets installed with ngshare_exchange. You can use ngshare-course-management -h to view the help message, and ngshare-course-management subcommand -h to view details on how to use the subcommand.

Admin Only Commands

Creating Courses

To create a course, run ngshare-course-management create_course COURSE_ID [INSTRUCTOR [INSTRUCTOR ...]]. COURSE_ID is the ID of the course created, and you may specify a list of instructors that are added to the course. If you leave this empty, the course won’t have any instructors and you may add them later.

Adding/Updating Instructors

To add an instructor to a course, run ngshare-course-management add_instructor COURSE_ID INSTRUCTOR_ID. The ID is the instructor’s JupyterHub username. You may also specify -f FIRST_NAME, -l LAST_NAME, and -e EMAIL for the instructor. If the instructor already exists, their name and email will be updated.

Removing Instructors

To remove an instructor from a course, run ngshare-course-management remove_instructor COURSE_ID INSTRUCTOR_ID. This will revoke their access to the specified course.

Instructor Commands

Adding a Single Student

To add a student to a course, run ngshare-course-management add_student COURSE_ID STUDENT_ID. This will add the student to both ngshare and the local nbgrader gradebook. The ID is the student’s JupyterHub username. You may also specify -f FIRST_NAME, -l LAST_NAME, and -e EMAIL for the student. If the student already exists, their name and email will be updated. If you do not want to add the student to the local nbgrader gradebook, you can specify --no-gb.

Adding Students in Bulk

To add multiple students at once, create a CSV file with the following contents:

student_id,first_name,last_name,email
sid1,jane,doe,jd@mail.com
sid2,john,perez,jp@mail.com

The header must be student_id,first_name,last_name,email. After that, enter students one line at a time. You may omit the first name, last name and/or email if needed, but there should be 3 commas per line (for example, student,,, is a student with no name or email).

After you create the CSV file, run ngshare-course-management add_students COURSE_ID PATH_TO_CSV_FILE. This will also add students to the local nbgrader gradebook. If you do not want this to happen (only add students to ngshare, not the gradebook), you can specify --no-gb.

Removing Students

To remove students from a course, run ngshare-course-management remove_students COURSE_ID STUDENT [STUDENT ...]. You can specify multiple students in the same command. This will remove students from both ngshare and the local nbgrader gradebook. If you do not want to remove students from the local gradebook, use --no-gb. If you want to force removal of a student from the local gradebook (even if this deletes their grades), use --force.

 Demo

Demo

For this demo, you need to setup a clean environment using JupyterHub + nbgrader + ngshare.
.. You can use the [minikube testing setup](/testing#testing-setup) to do it easily.

Creating Course

	Login as user “admin”.

	Open a terminal using “New -> Terminal”

	Create a course with two instructors using

ngshare-course-management create_course ECS193 kevin abigail

Adding Students

	Login as user “kevin”.

	Open a terminal using “New -> Terminal”

	Add students to the course using

ngshare-course-management add_student ECS193 lawrence -f lawrence_first -l lawrence_last -e lawrence@email
ngshare-course-management add_student ECS193 eric -f eric_first -l eric_last -e eric@email

	Create a new file with “New -> Text File”, name it nbgrader_config.py and add the following content:

c.CourseDirectory.course_id = "ECS193"

	Go to “Control Panel”, click on “Stop My Server”

	Click on “Start My Server”

	Go to “Formgrader -> Manage Students”. You should see the two students created before.

Releasing Assignment

	Make sure you are logged in as user “kevin”.

	Go to “Formgrader -> Manage Assignments”.

	Click “Add new assignment…”.

	Click on the name of the assignment you just added.

	“New -> Notebook -> Python 3”, and edit the notebook as in normal nbgrader.

	Add some code to the block.

	“View -> Cell Toolbar -> Create Assignment”.

	Select “Autograded answer”.

	…

	Save notebook.

	Click the button under “Generate” in Formgrader.

	Click the button under “Release”.

Doing Assignment

	Login as user “lawrence” (you may want to use incognito mode).

	Go to “Assignments” tab.

	Click “Fetch” for the new assignment.

	Click on the assignment name and the ipyndb name to open the homework.

	Do your homework.

	Click “Submit” in “Assignments -> Downloaded assignments”.

Grading Assignment

	Make sure you are logged in as user “kevin”.

	Go to “Formgrader -> Manage Assignments”.

	Click the button under “Collect” in Formgrader.

	You should see “1” under “# Submissions”. Click on this number.

	Click the button under “Autograde” in Manage Submissions.

	Click Student Name, and then the notebook name to open the submission.

	Write some feedback for the student.

	Click “Next” at upper right corner.

	Go back to “Manage Assignments”.

	Click the button under “Generate Feedback”.

	Click the button under “Release Feedback”.

Viewing Feedback

	Make sure you are logged in as user “lawrence”.

	Under “Assignments”, click “Fetch Feedback”

	Click “(view feedback)”.

	Click notebook name.

	Now you can see the html feedback.

 Reporting Bugs

Reporting Bugs

If you find a bug in ngshare, submit an issue to https://github.com/LibreTexts/ngshare/issues.

 Frequently Asked Questions

Frequently Asked Questions

Do I need to backup database?

Yes, you should regularly backup your database in case of corruption.

The database should be backed up before updating ngshare because the schema and data migration may corrupt the database.

See Notes for Administrators for details.

Will attackers be able to clear ngshare database?

Though there is a “clear database” button in ngshare welcome page, this functionality is disabled as long as you are not starting ngshare in debug mode (which is the default configuration for ngshare). So attackers cannot directly clear your database even if they log in as an admin user in ngshare.

 Change Log

Change Log

0.5.1

ngshare:

	Update helm chart with clearer installation instructions

	Misc. documentation updates to help with installation

	Transfer repository ownership to LibreTexts, change all GitHub links and tokens related to Travis, PyPI, etc

	Test Travis autopublishing a stable release

ngshare_exchange:

	Drastically increase test coverage

	Removed some dead code

	Several important bugfixes and typo fixes in the exchange classes and course management tool

	Transfer repository ownership to LibreTexts, change all GitHub links and tokens related to Travis, PyPI, etc

	Test Travis autopublishing a stable release

0.5.0

Initial release intended for the public.

 APIs Introduction

APIs Introduction

ngshare follows REST API design.

Adapted from the proposed JupyterHub exchange service [https://github.com/jupyter/nbgrader/issues/659].

Last updated May 20, 2020

 Definitions

Definitions

Admin User

Admin users have special privilege on ngshare (e.g. create / delete courses). The list of admin users can be set by --admins= argument in ngshare or vngshare.

Assignment Name

Also referred to as assignment_id, this is a unique name for an assignment within a course. For example, “Assignment 1”.

Checksum

The md5 checksum of a file.

Course Name

Also referred to as course_id, this is a unique name for a course. For example, “NBG 101”.

Directory Tree

Assignments consist of a directory, notebook files in the root, and optional supplementary files in the root and/or subdirectories. In order to send an entire assignment in one request, a JSON file has a list of maps for each file. The following structure will be referred to as “encoded directory tree.”

path should be in Unix style, and should be relative. For example: a.ipynb or notes/a.txt. Pathnames not following this style will be rejected by server with error 400 “Illegal path”.

[
 {
 "path": /* file path relative to the root */,
 "content": /* base64 encoded file contents */,
 "checksum": /* md5 checksum of file contents */
 },
 ...
]

Instructor ID

The ID given to an instructor. For example, “course1_instructor” or “doe_jane”.

Notebook Name

Also referred to as notebook_id, this is the base name of a .ipynb notebook without the extension. For example, “Problem 1” is the name for the notebook “Problem 1.ipynb”.

Student ID

The ID given to a student. For example, “doe_jane”.

Timestamp

A timestamp of when a user initiates the assignment submission process. It follows the format [https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes] "%Y-%m-%d %H:%M:%S.%f %Z". For example, 2020-01-30 10:30:47.524219 UTC.

 Request and Response Format

Request and Response Format

Requests

Clients will send HTTP request to server. Possible methods are:

	GET

	POST

	DELETE

The method to use is specified in each API entry point.

The client may need to supply GET parameters or POST data.

GET Example

(For authentication for vngshare, see Authentication)

GET /api/assignment/course1/challenge?list_only=true HTTP/1.1
Host: my-ngshare-host
Authorization: token ABCDEFGHIJKLMNOPQRSTUVWXYZ

POST Example

(For authentication for vngshare, see Authentication)

POST /api/students/course2 HTTP/1.1
Host: my-ngshare-host
Content-Type: application/x-www-form-urlencoded
Content-Length: 189
Authorization: token ABCDEFGHIJKLMNOPQRSTUVWXYZ

students=%5B%7B%22username%22%3A+%22kevin%22%2C+%22first_name%22%3A+%22kevin_first_name%22%2C+%22last_name%22%3A+%22kevin_last_name%22%2C+%22email%22%3A+%22kevin_email%22%7D%5D

Response

When the client is not authenticated (e.g. not logged in), server will return HTTP 301 and redirect user to login page.

When the client tries to access an invalid entrypoint, server will return HTTP 404 Not Found.

When the client performs a request with an invalid method, server will return HTTP 405 Method Not Allowed.

When the client is authenticated, server will return a status code and a JSON object (specified below).

	When success, the status code will be 200 and response will be
{"success": true, ...}, where ... may contain extra information.

	When fail, the status code will be between 400 and 499 (inclusive).
The response will be {"success": false, "message": "Error Message"}.
Possible values for Error Message are defined in each “Error messages”
sections.

	When server encounters an error, it will return HTTP 500. In this case,
the client should submit a bug report and report this to ngshare maintainers.

Success Example

HTTP/1.1 200 OK
Server: TornadoServer/6.0.3
Content-Type: text/html; charset=UTF-8
Date: Fri, 15 May 2020 19:46:31 GMT
Content-Length: 95

{"success": true, "files": [{"path": "file2", "checksum": "3d2172418ce305c7d16d4b05597c6a59"}]}

Error Example

HTTP/1.1 403 Forbidden
Server: TornadoServer/6.0.3
Content-Type: text/html; charset=UTF-8
Date: Fri, 15 May 2020 19:50:05 GMT
Content-Length: 50

{"success": false, "message": "Permission denied"}

 Authentication

Authentication

ngshare Authentication

ngshare uses JupyterHub authentication tokens to authenticate the user. This is usually in the JUPYTERHUB_API_TOKEN environment variable in each user’s notebook servers. ngshare will use this token to fetch the username of the current user. The username is the only information used to identify the user.

To send the token to ngshare, use the Authorization: token header in HTTP requests to ngshare.

GET Example

GET /api/assignment/course1/challenge?list_only=true HTTP/1.1
Host: my-ngshare-host
Authorization: token ABCDEFGHIJKLMNOPQRSTUVWXYZ

POST Example

POST /api/students/course2 HTTP/1.1
Host: my-ngshare-host
Content-Type: application/x-www-form-urlencoded
Content-Length: 189
Authorization: token ABCDEFGHIJKLMNOPQRSTUVWXYZ

instructors=%5B%22eric%22%5D

vngshare Authentication

For vngshare, there is no password authentication. The username is specified in the GET param or POST data field user.

GET Example

GET /api/assignment/course1/challenge?user=lawrence&list_only=true HTTP/1.1
Host: 127.0.0.1:12121

Post Example

POST /api/course/course2 HTTP/1.1
Host: my-ngshare-host
Content-Type: application/x-www-form-urlencoded
Content-Length: 38

instructors=%5B%22eric%22%5D&user=root

 Course APIs

Course APIs

/api/courses: Courses

GET /api/courses

List all available courses taking or teaching. (students+instructors)

List all courses in ngshare. (admins)

Response

{
 "success": true,
 "courses":
 [
 /* course name */,
 ...
]
}

Error Messages

	302 (Login required)

/api/course: Course

POST /api/course/<course_id>

Create a course (admins).

The new course will have no students. It has no instructors unless specified in request.

Request (HTTP POST data)

instructors=["/*instructor username*/", ...] /* optional */

Response

{
 "success": true
}

Error Messages

	400 Instructors cannot be JSON decoded

	409 Course already exists

DELETE /api/course/<course_id>

Remove a course (admins).

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

/api/instructor: Course Instructor Management

POST /api/instructor/<course_id>/<instructor_id>

Add or update a course instructor. (admins)

Update own full name or email. (instructors)

If the user is already a student of the course, the student relationship will be removed.

Request (HTTP POST data)

first_name=/*instructor first name*/&
last_name=/*instructor last name*/&
email=/*instructor email*/

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	400 Please supply first name

	400 Please supply last name

	400 Please supply email name

GET /api/instructor/<course_id>/<instructor_id>

Get information about a course instructor. (instructors+students)

When first name, last name, or email not set, the field is null.

Response

{
 "success": true,
 "username": /* instructor ID */,
 "first_name": /* instructor first name*/,
 "last_name": /* instructor last name*/,
 "email": /* instructor email*/
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Instructor not found

DELETE /api/instructor/<course_id>/<instructor_id>

Remove a course instructor (admins)

The instructor’s submissions are not removed from the course.

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Instructor not found

/api/instructors: List Course Instructors

GET /api/instructors/<course_id>

Get information about all course instructors. (instructors+students)

When first name, last name, or email not set, the field is null.

Response

{
 "success": true,
 "instructors":
 [
 {
 "username": /* instructor ID */,
 "first_name": /* instructor first name*/,
 "last_name": /* instructor last name */,
 "email": /* instructor email */
 },
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

/api/student: Student Management

POST /api/student/<course_id>/<student_id>

Add or update a student. (instructors only)

Fails if the user is an instructor of the course.

Request (HTTP POST data)

first_name=/*student first name*/&
last_name=/*student last name*/&
email=/*student email*/

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	409 Cannot add instructor as student

	400 Please supply first name

	400 Please supply last name

	400 Please supply email

GET /api/student/<course_id>/<student_id>

Get information about a student. (instructors+student with same student_id)

When first name, last name, or email not set, the field is null.

Response

{
 "success": true,
 "username": /* student ID */,
 "first_name": /* student first name*/,
 "last_name": /* student last name */,
 "email": /* student email */
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Student not found

DELETE /api/student/<course_id>/<student_id>

Remove a student (instructors only)

The student’s submissions are not removed from the course (visible to instructors).

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Student not found

/api/students: List Course Students

POST /api/students/<course_id>

Add or update students. (instructors only)

If the request syntax is correct, will return 200 and report whether each student is added correctly.

Request (HTTP POST data)

{
 "students":
 [
 {
 "username": /* student ID */,
 "first_name": /* student first name */,
 "last_name": /* student last name */,
 "email": /* student email */
 },
 ...
]
}

Response

{
 "success": true
 "status":
 [
 {
 "username": /* student ID */,
 "success": true
 },
 {
 "username": /* student ID */,
 "success": false,
 "message": /* error message */
 },
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	400 Please supply students

	400 Students cannot be JSON decoded

	400 Incorrect request format

GET /api/students/<course_id>

Get information about all course students. (instructors only)

When first name, last name, or email not set, the field is null.

Response

{
 "success": true,
 "students":
 [
 {
 "username": /* student ID */,
 "first_name": /* student first name*/,
 "last_name": /* student last name */,
 "email": /* student email */
 },
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

 Assignment APIs

Assignment APIs

/api/assignments: Course Assignments

GET /api/assignments/<course_id>

list all assignments for a course (students+instructors)

Response

{
 "success": true,
 "assignments":
 [
 /* assignment name */,
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

/api/assignment: Fetching and Releasing an Assignment

GET /api/assignment/<course_id>/<assignment_id>

download a copy of an assignment (students+instructors)

If list_only is true, files only contains path and checksum (does not contain content).

Request (HTTP GET parameter)

list_only=/* true or false */

Response

{
 "success": true,
 "files": /* encoded directory tree */
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

POST /api/assignment/<course_id>/<assignment_id>

release an assignment (instructors only)

Request (HTTP POST data)

files=/* encoded directory tree in JSON */

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	409 Assignment already exists

	400 Please supply files

	400 Illegal path

	400 Files cannot be JSON decoded

	400 Content cannot be base64 decoded

	500 Internal server error

DELETE /api/assignment/<course_id>/<assignment_id>

Remove an assignment (instructors only).

All submissions and files related to the assignment will disappear.

Note: this may be replaced by assignment states in the future.

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

/api/submissions: Listing Submissions

GET /api/submissions/<course_id>/<assignment_id>

list all submissions for an assignment from all students (instructors only)

Response

{
 "success": true,
 "submissions":
 [
 {
 "student_id": /* student ID */,
 "timestamp": /* submission timestamp */
 },
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

GET /api/submissions/<course_id>/<assignment_id>/<student_id>

list all submissions for an assignment from a particular student (instructors+students, though students are restricted to only viewing their own submissions)

Response

{
 "success": true,
 "submissions":
 [
 {
 "student_id": /* student ID */,
 "timestamp": /* submission timestamp */
 },
 ...
]
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

	404 Student not found

/api/submission: Collecting and Submitting a Submission

POST /api/submission/<course_id>/<assignment_id>

submit a copy of an assignment (students+instructors)

Request (HTTP POST data)

files=/* encoded directory tree in JSON */

Response

{
 "success": true,
 "timestamp": /* submission timestamp */
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

	400 Please supply files

	400 Illegal path

	400 Files cannot be JSON decoded

	400 Content cannot be base64 decoded

	500 Internal server error

GET /api/submission/<course_id>/<assignment_id>/<student_id>

download a student’s submitted assignment (instructors only)

If list_only is true, files only contains path and checksum (does not contain content). If timestamp is not supplied, the latest submision is returned.

Request (HTTP GET parameter)

list_only=/* true or false */&
timestamp=/* submission timestamp */

Response

{
 "success": true,
 "timestamp": /* submission timestamp */,
 "files": /* encoded directory tree */
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

	404 Student not found

	404 Submission not found

/api/feedback: Fetching and Releasing Submission Feedback

POST /api/feedback/<course_id>/<assignment_id>/<student_id>

upload feedback on a student’s assignment (instructors only)

Old feedback on the same submission will be removed.

Request (HTTP POST data)

timestamp=/* submission timestamp */&
files=/* encoded directory tree in JSON */

Response

{
 "success": true
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

	404 Student not found

	404 Submission not found

	400 Please supply timestamp

	400 Time format incorrect

	400 Please supply files

	400 Illegal path

	400 Files cannot be JSON decoded

	400 Content cannot be base64 decoded

	500 Internal server error

GET /api/feedback/<course_id>/<assignment_id>/<student_id>

download feedback on a student’s assignment (instructors+students, though students are restricted to only viewing their own feedback)

When feedback is not available, files will be empty.

If list_only is true, files only contains path and checksum (does not contain content).

Request (HTTP GET parameter)

timestamp=/* submission timestamp */&
list_only=/* true or false */

Response

{
 "success": /* true or false*/,
 "timestamp": /* submission timestamp */,
 "files": /* encoded directory tree */
}

Error Messages

	302 (Login required)

	403 Permission denied

	404 Course not found

	404 Assignment not found

	404 Student not found

	404 Submission not found

	400 Please supply timestamp

	400 Time format incorrect

 Project Structure

Project Structure

ngshare

ngshare/ directory contains Tornado web server code for ngshare.

Python scripts

ngshare.py is the Tornado web server code for ngshare.

vngshare.py is a Python script for starting vngshare. See vngshare.

Unit tests

test_ngshare.py defines unit tests for ngshare.

database/test_database.py defines unit tests for database structure.

test_dbutil.py defines unit tests for database migration.

HTML and JS

dump.html, home.html, and masonry.min.js are for the welcome page and database dump page.

Favicon

favicon.ico, favicon.png, and favicon.svg are the icon for ngshare in different file formats.

Database

The database structure is defined in database/. See Database Structure.

Alembic

alembic/, alembic.ini, and dbutil.py are for database migration. See Migration with Alembic.

Version Number

ngshare/version.py defines the current version. It follows “Single-sourcing the package version” [https://packaging.python.org/guides/single-sourcing-package-version/]

Continuous Integration

.travis.yml configures continuous integration for unit test and coverage test.

Documentation

docs/ directory contains source code for documentation. See Documentation.

Deployment

setup.py is for installing and packaging this project.

Testing

testing/ contains setups used for testing ngshare, ngshare_exchange, nbgrader, and Z2JH.

testing/docker contains a Docker environment for initial testing. It is slightly out of date and still uses our fork of ngshare rather than ngshare_exchange.

testing/minikube contains a minikube environment. This is the main testing setup for local development, and it uses ngshare and ngshare_exchange on the local filesystem.

testing/install_jhmanaged contains a Docker environment that demonstrates how a regular user would install ngshare and ngshare_exchange.

testing/install_z2jh contains a minikube environment that demonstrates how a regular user would install ngshare and ngshare_exchange on a standard Kubernetes cluster.

ngshare_exchange

The client side of ngshare is packaged into a separate repo [https://github.com/LibreTexts/ngshare_exchange].

ngshare_exchange/*.py implement a nbgrader pluggable exchange that uses ngshare to release, fetch, and submit assignments.

ngshare_exchange/course_management.py will be installed as the ngshare-course-management command. It is used for admins and instructors to manage course rosters.

 Decisions

Decisions

Technologies Employed

When developing ngshare, we used many technologies that are used by other Jupyter projects, especially nbgrader and JupyterHub [https://github.com/jupyterhub/jupyterhub]. In this way, our project is most likely to be consistent with other Jupyter projects.

Backend

	JupyterHub [https://github.com/jupyterhub/jupyterhub] - A multi-user
version of Jupyter Notebook (indirectly used)

	kubernetes [https://kubernetes.io/] - Underlying container management
system (indirectly used)

	minikube [https://kubernetes.io/docs/setup/learning-environment/minikube/] -
A light-weight testing environment for kubernetes (indirectly used)

	Tornado web server [https://www.tornadoweb.org/] - A Python web framework
used in Jupyter community

Database

	SQLAlchemy [https://www.sqlalchemy.org/] - A Python SQL toolkit

	SQLite3 [https://www.sqlite.org/index.html] - a light weight database
engine

	Alembic [https://alembic.sqlalchemy.org/] - SQLAlchemy migration tool

	ERAlchemy [https://github.com/Alexis-benoist/eralchemy] - Generate entity
relation diagrams

Progamming Language

	Python [https://www.python.org/] - The major programming language used to
develop nbgrader

	pytest [https://pypi.org/project/pytest/] - Unit test framework

	pytest-cov [https://pypi.org/project/pytest-cov/] - Code coverage

	pytest-tornado [https://pypi.org/project/pytest-tornado/] - Test Tornado
server

	black [https://github.com/psf/black] - a Python code formatter

Project Management

	GitHub [https://github.com/] - a git repository management website

	Travis CI [https://travis-ci.org/] - Continous integration

	Codecov [https://codecov.io/] - Code coverage

	Read the Docs [https://readthedocs.org/] - Documentation

Race Condition

It is possible to configure multiple ngshare instances to run at the same time, or allow one ngshare instance to run in multithread mode. This may trigger an untested race condition and cause an error in production.

We decided to warn users about this when they try to configure ngshare in this way.

Database Update

There are a few options on letting whom to update the database:

	Users must manually use alembic upgrade head when ngshare updates,
otherwise ngshare will refuse to start.

	ngshare will automatically run alembic upgrade on startup, but the user can
choose to turn this off using a command line argument.

	ngshare will automatically run alembic upgrade on startup. The user may not
disable this.

JupyterHub is using option 2, and we decide to follow this, so that users do not have to perform manual intervention during upgrades. So it is developers’ responsibility to make sure Alembic upgrade will not break (e.g. write enough test cases).

To make sure users do not encounter database version problems, we decided to automatically run Alembic upgrade (both schematic and data migration) each time ngshare / vngshare is started. There is little overhead for the version check. We assume that users are regularly backing up their database (e.g. when data migration fails, the database’s schema may be updated while alembic_version is not).

 Developer Installation

Developer Installation

For using ngshare, see Installing.

Install from GitHub

git clone https://github.com/LibreTexts/ngshare.git
cd ngshare/
pip3 install .

Run Installed ngshare

python3 -m ngshare [arguments]

Run ngshare without Installation

The first line installs pip dependencies.

pip3 install tornado jupyterhub sqlalchemy
git clone https://github.com/LibreTexts/ngshare.git
cd ngshare/ngshare/
python3 ngshare.py [arguments]

Run vngshare

vnshare can be used by running vngshare.py or by adding some arguments to ngshare.

	--vngshare: Mock authentication (using only username)

	--debug: enable debug

	--database sqlite:////tmp/ngshare.db: change default database path

	--storage /tmp/ngshare: change default storage path

Run vngshare from Installed ngshare

python3 -m ngshare --vngshare --debug [arguments]

Run vngshare without Installation

pip3 install pytest pytest-cov pytest-tornado
git clone https://github.com/LibreTexts/ngshare.git
cd ngshare/ngshare/
python3 vngshare.py [arguments]
OR
python3 ngshare.py --vngshare --debug [arguments]

 vngshare

vngshare

vngshare is the stand-alone mode of ngshare. It stands for Vserver-like Notebook Grader Share. It is similar to vserver [https://github.com/lxylxy123456/ngshare-vserver/] and allows easy testing. For details about vserver, see “Development History” below.

Install

For detailed instructions, see Developer Installation.

pip3 install tornado jupyterhub sqlalchemy
cd ngshare
python3 vngshare.py [--host <bind_IP_address> [--port <port_number>]]

Default Behavior

vngshare by default enables debug (e.g. verbose error output). It allows developers to view and reset database content easily. Users can be authenticated by simply passing in their username in GET / POST requests (see Authentication).

vngshare will create a database at /tmp/ngshare.db and store uploaded files in /tmp/ngshare/. Though there is no file system APIs like in vserver, unauthorized users can easily corrupt your data. So do not use in production.

Development History

The development of ngshare (backend) requires collaborating with frontend development and requires solving technical issues, so our plan breaks the development into different stages.

	Develop vserver (see Project Structure) with Unix file system APIs.
This allows frontend to forward all file system calls (e.g. read file, write
file) to another server. It allows frontend to test the idea when backend is
implementing next stage.

	Develop vserver with nbgrader APIs (e.g. create course, release assignment).
After this the frontend can begin large changes to the exchange mechanism
by replacing file system calls with nbgrader API calls. At this point no
authentication is made.

	Add authentication to vserver nbgrader APIs. To make things simple the
frontend just needs to send the username, and the backend trusts what frontend
does. During the first three stages, the backend can concurrently investigate
how to set up a JupyterHub service.

	Port vserver’s nbgrader APIs to ngshare (final API server). There should be
minimal effort in both backend and frontend as long as JupyterHub service can
be set up correctly. The front end need to change the address of the server
and send an API token instead of username; the backend need to copy the logic
of vserver.

	Maintain ngshare, fix any bugs and implement any features as frontend
requests.

Currently we are at stage 5.

Historical Project Structure

This project used to has 2 parts

	ngshare is the final API server that will be used in nbgrader in production.
Written as Tornado Web Server and using SQLAlchemy.

	vngshare stands for Vserver-like Notebook Grader Share. It has the same
functionality as ngshare but is built as a stand-alone server (does not
require JupyterHub environment), which makes testing easier.

	vserver is a simple and vulnerable API server, written in Flask, that
allows testing the project structurte and development of frontend without
waiting for backend.

	Mar 7, 2020: Since ngshare is already mature, vserver is no longer
maintained.

	May 9, 2020: vserver is migrated to
https://github.com/lxylxy123456/ngshare-vserver/

 Development

Development

Stand-Alone Mode

Using vngshare can make developing easy because developers do not need to worry about authentications etc. See vngshare.

Unit Testing

We use pytest [https://pypi.org/project/pytest/] for unit tests. The pytest-tornado [https://pypi.org/project/pytest-tornado/] plugin allows us to test a Tornado server.

pip3 install pytest pytest-cov pytest-tornado
pytest

Coverage

We use pytest-cov [https://pypi.org/project/pytest-cov/] to gather code coverage. To collect coverage, use:

pytest --cov=./ngshare/

To show uncovered lines, use:

pytest --cov-report term-missing --cov=./ngshare/ ./ngshare/

Code Formatting

We use black [https://github.com/psf/black] to format our code.

pip3 install black
black -S -l 80 .

Contributing

If you want to contribute to ngshare, submit a pull request to https://github.com/LibreTexts/ngshare/pulls.

 Database Structure

Database Structure

ngshare is using SQLAlchemy [https://www.sqlalchemy.org/] to model data relationships and manage database queries.

Tables

	User: analogous to users of JupyterHub. A user can be a student, instructor,
or both.

	Course: a course for nbgrader, can have multiple students and instructors.

	Assignment: an assignment, has multiple states; belongs to a course.

	Submission: a student’s submission to an assignment; includes submission
and feedback; belongs to an assignment.

	File: Store files related to 1) assignment, 2) submission, or 3) feedback.

Allocation Tables

Allocation tables are created by SQLAlchemy to represent many-to-many relationships. You should not worry about them when designing a high-level database structure.

	instructor_assoc_table: Relationship between instructor (User) and
Course

	Also contains metadata: first_name, last_name, email

	student_assoc_table: Relationship between student (User) and
Course

	Also contains metadata: first_name, last_name, email

	assignment_files_assoc_table: Relationship between Assignment and
File

	submission_files_assoc_table: Relationship between Submission and
File

	feedback_files_assoc_table: Relationship between feedback (Submission)
and File

Assignment State

Currently, the Assignment table has a boolean column released. It may be used in future versions of ngshare to manage assignment states.

Entity Relationship Diagram

To generate a graph using ERAlchemy [https://pypi.org/project/ERAlchemy/]:

pip3 install eralchemy
cd ngshare
python3 dbutil.py upgrade head
eralchemy -i sqlite:////tmp/ngshare.db -o database/er.png

Current Entity Relation Diagram

[image: Entity Relation diagram]
Note: this image is manually maintained.

 Migration with Alembic

Migration with Alembic

Whenever the database structure is changed, developers should update migration instructions for the database using alembic. The default ngshare configuration automatically upgrades the database when starting.

Upgrade Database

This is automatically done in vanilla ngshare and vngshare implementations.

cd ngshare
python3 dbutil.py upgrade head

Create New Version

After a change is made in ngshare/database/database.py, use the following command to generate a migration script.

“It is always necessary to manually review and correct the candidate migrations that autogenerate produces.”

cd ngshare
python3 dbutil.py revision --autogenerate -m "MESSAGE"
vi alembic/versions/REVID_MESSAGE.py

MESSAGE is your message for the update.

REVID is the revision ID generated by Alembic.

ngshare runs data migration using Alembic (see Decisions), and the default configuration performs the migrations automatically. So make sure write test cases for the data migration in order to minimize the chance for Alembic upgrade to crash.

Reference

	https://alembic.sqlalchemy.org/en/latest/tutorial.html

	https://alembic.sqlalchemy.org/en/latest/autogenerate.html

Update History

	aa00db20c10a_init.py: initialize database

	1921a169739b_add_file_size.py: add file size column in File table.
If file not found during data migration, File.size will be None.

 Documentation

Documentation

This project uses Sphinx to generate documentation for Read the Docs. To
install make dependencies and generate the HTML version of the documentation,
run the following.

pip3 install sphinx sphinxcontrib-tikz sphinx_rtd_theme
cd docs
make html

You may need to install other LaTeX packages to make TikZ images work properly. For example, on Arch Linux, you need to use pacman -S texlive-core texlive-latexextra texlive-pictures.

See https://sphinxcontrib-tikz.readthedocs.io/en/latest/#prerequisites-and-configuration for details.

Documentation Formatting

For titles, use title case (e.g. “Documentation Formatting”), but do not capitalize things like “ngshare”, “a”, “the”, etc.

 Deployment

Deployment

This project uses Travis CI to automatically upload packages to PyPI.

The stable branch will be used for PyPI deployment. When a new version of ngshare is ready, submit a pull request to merge from master to stable, and increase the version number in ngshare/version.py (otherwise deployment will fail because of name conflict on PyPI).

.travis.yml specifies that each build on stable branch with Python version 3.8 will trigger a deployment.

 Glossary

Glossary

	Jupyter (notebook) [https://jupyter.org/]: web application to create and share documents that contain live code, equations, visualizations etc.

	JupyterLab [https://jupyter.org/]: web-based interactive development environment for Jupyter notebooks, code and data.

	JupyterHub [https://jupyter.org/]: A multi-user version of the notebook designed for companies, classrooms and research labs.

	Zero-to-JupyterHub [https://zero-to-jupyterhub.readthedocs.io/en/latest/]: A version of JupyterHub, for use with a Kubernetes cluster.

	nbgrader [https://nbgrader.readthedocs.io/en/stable/]: facilitates creating and grading assignments in the jupyter notebook.

	kubernetes (k8s) [https://kubernetes.io]: system for automating, deployment, scaling, and management of containerized applications.

	hubshare [https://github.com/jupyterhub/hubshare]: a directory sharing service for JupyterHub, currently in early development.

	ngshare [https://github.com/lxylxy123456/ngshare]: an original backend server for nbgrader’s exchange service.

 Contact Information

Contact Information

Team Members

	Kevin Rong <krong@ucdavis.edu>

	Abigail Almanza <aalmanza@ucdavis.edu>

	Lawrence Lee <billee@ucdavis.edu>

	Eric Li <ercli@ucdavis.edu>

Clients

	Christopher Nitta <cjnitta@ucdavis.edu>

	Jason K. Moore <jkm@ucdavis.edu>

Jupyter Community

	Jupyter in Education Mailing List
jupyter-education@googlegroups.com

	Jupyter Discourse Forum
https://discourse.jupyter.org/

	Github issues pages (e.g.
https://github.com/jupyter/nbgrader/issues)

Deployment

	UC Davis Jupyter team <jupyterteam@ucdavis.edu>

 Technology Survey

Technology Survey

The Problem

nbgrader can be used in JupyterHub for creating and grading assignments, but there are issues when JupyterHub is deployed as a Kubernetes cluster. nbgrader distributes and collects assignments via a shared directory between instructors and students called the exchange directory. nbgrader does not work on a Kubernetes setup because there isn’t a shared filesystem in which to place the exchange directory.

[image: Original System Architecture Diagram]

Alternative Solutions

We brainstormed a few possible solutions before starting the ngshare project:

hubshare

hubshare [https://github.com/jupyterhub/hubshare] is a directory sharing
service for JupyterHub.

Pros

	Universal solution which can be integrated with nbgrader.

	Considered for a similar service desired by the primary nbgrader developer
(see
jupyter/nbgrader#659 [https://github.com/jupyter/nbgrader/issues/659]).

Cons

	Lots of work to implement HubShare.

	The nbgrader exchange needs to be reworked.

	Too generic, as it does not have permission control specific to courses and
assignments (see
this comment [https://github.com/jupyter/nbgrader/issues/659#issuecomment-431762792]).

NFS

Another solution is to let every container access a shared file system
through NFS (Network File System).

Pros

	Simple and doable.

	Requires minimal changes and additions to the Jupyter project.

Cons

	Not a universal solution. NFS setups will vary across deployments.

Kubernetes Persistent Volume Claim

Kubernetes Persistent Volume Claim [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims]
allows containers to request shared file systems.

Pros

	More universal than the NFS solution.

	Requires minimal changes and additions to the Jupyter project.

Cons

	Difficult to work around limitations regarding multiple writers per
volume. Need to find a way to have correct permissions for students and
instructors.

	Does not work with some volume plugins [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes].

We think the best of these solutions is hubshare, but it is too general. We decided to create our own solution, which is a service similar to hubshare but more specialized for nbgrader. We call it ngshare, short for nbgrader share.

ngshare

ngshare implements a set of REST APIs designed
for the nbgrader exchange mechanism.

Pros

	Universal solution which can be integrated with nbgrader.

	Full control over APIs in this project.

Cons

	Work needs to be done to implement ngshare.

	The nbgrader exchange needs to be reworked.

 Requirements

Requirements

User Stories

	As a campus IT service provider, I want to be able to run nbgrader on kubernetes, so the teachers can easily direct students to use nbgrader on the service I provide in their programming classes.

	As a programming class teacher, I want nbgrader to be able to run on the JupyterLab interface. It would give students access to a more user-friendly programming environment.

	As a course instructor, I want nbgrader to warn me when I’m about to publish an edited assignment from “preview” mode in order to minimize the risk of accidentally releasing something I wrote for testing purposes.

	As a course instructor / TA, I want a button that runs the nbgrader autograder for all students’ submissions so that I don’t have to click “autograde” for every submission.

	As a course instructor / TA, I want to be able to manually grade one question across all submissions so that I can grade question by question instead of submission by submission.

	As a course instructor / TA, I want to be able to write a rubric before grading and then use it to quickly assign points to a problem, instead of typing in grade and feedback for each student’s submission. This functionality can be similar to what Gradescope provides.

	As a course instructor, I want to be able to automatically create links in Canvas that directs students to the corresponding JupyterHub / JupyterLab page.

	As a course instructor, I want a way to automatically upload all grades from an nbgrader assignment to Canvas.

	As a course instructor / TA, I want to make sure that nbgrader is running the student’s submission in a sandbox environment, so that if a student writes malicious code, the code will not affect me and other students.

	As a course instructor, I want to be able to assign each TA a separate JupyterHub account, and they can grade the assignment for the same course. It is favorable to record who graded which assignment / submission.

	As a course instructor / TA, I want to be able to work on multiple courses with only one account to the system. Currently I have to have one account for each course I am grading.

	As a non-English speaker / teacher, I hope nbgrader can have a internationalized interface (e.g. Chinese, Japanese) so that it is more friendly to my students.

	As a teacher, I would like to easily import student roster from Canvas when the quarter begins. And when I notice students add , drop, or switch sections of the course, I would like to have a way to easily manage the change.

	As a instructor, I would like to have a back button in formgrader (url is /user/<username>/formgrader) of ngshare so that I can easily go back to my JupyterHub homepage after I grade a homework

	As a instructor / TA, I hope ngshare can have a way to handle regrade requests, instead of having all students email me and looking for each student in the system when handling each regrade request.

	As a Windows server cluster manager, I hope nbgrader and ngshare can support more platforms by fixing problems like path name translation.

 Prototyping code

Prototyping code

	https://github.com/lxylxy123456/ngshare

	https://github.com/lxylxy123456/nbgrader

	https://github.com/rkevin-arch/zero-to-jupyterhub-k8s

	https://github.com/rkevin-arch/kubespawner_service_jupyterhub

	https://github.com/lxylxy123456/ngshare-vserver

	https://github.com/lxylxy123456/ngshare_exchange

 Technologies Employed

Technologies Employed

When developing ngshare, we used many technologies that are used by other Jupyter projects, especially nbgrader and JupyterHub [https://github.com/jupyterhub/jupyterhub]. In this way, our project is most likely to be consistent with other Jupyter projects.

Backend

	JupyterHub [https://github.com/jupyterhub/jupyterhub] - A multi-user
version of Jupyter Notebook (indirectly used)

	kubernetes [https://kubernetes.io/] - Underlying container management
system (indirectly used)

	minikube [https://kubernetes.io/docs/setup/learning-environment/minikube/] -
A light-weight testing environment for kubernetes (indirectly used)

	Tornado web server [https://www.tornadoweb.org/] - A Python web framework
used in Jupyter community

Database

	SQLAlchemy [https://www.sqlalchemy.org/] - A Python SQL toolkit

	SQLite3 [https://www.sqlite.org/index.html] - a light weight database
engine

	Alembic [https://alembic.sqlalchemy.org/] - SQLAlchemy migration tool

	ERAlchemy [https://github.com/Alexis-benoist/eralchemy] - Generate entity
relation diagrams

Progamming Language

	Python [https://www.python.org/] - The major programming language used to
develop nbgrader

	pytest [https://pypi.org/project/pytest/] - Unit test framework

	pytest-cov [https://pypi.org/project/pytest-cov/] - Code coverage

	pytest-tornado [https://pypi.org/project/pytest-tornado/] - Test Tornado
server

	black [https://github.com/psf/black] - a Python code formatter

Project Management

	GitHub [https://github.com/] - a git repository management website

	Travis CI [https://travis-ci.org/] - Continous integration

	Codecov [https://codecov.io/] - Code coverage

	Read the Docs [https://readthedocs.org/] - Documentation

 System Architecture Overview

System Architecture Overview

ngshare is intended to run as a Kubernetes pod and service outside JupyterHub. In a Kubernetes setup, ngshare is proxied by JupyterHub’s proxy service and can be accessed from any JupyterHub user pod. It uses the Hub for authentication.

[image: System Architecture Diagram]

 Legal & Social Aspects

Legal & Social Aspects

Our project will be delivered in a way that does not involve deployment on our (the developer’s) side, so the users are responsible for deploying the project and setting up terms and conditions regarding their use of our project and collecting their user data.

Our project will be an extension on an existing open source project. The existing project is using the BSD license, which allows anyone to use and modify the software. The open source license disclaims all warranties, so there is not much we can say about the social and legal aspect of the product.

Our project will make a social impact on all current nbgrader users and possibly IT service providers for programming courses. Our project makes it possible to have centralized kubernetes or other container clusters maintained by IT service providers and used by individual programming class instructors. This feature may also let nbgrader be more popular.

 Porting nbextensions to JupyterLab

Porting nbextensions to JupyterLab

We have made good progress porting the extensions to JupyterLab, but we are not quite finished. This document contains notes on the progress for all of the extensions.

You can view our progress here [https://github.com/lxylxy123456/nbgrader/tree/lab-common].

Here’s a link [https://github.com/jupyter/nbgrader/issues/1006] to an existing issue relating to this.

Assignment List

The assignment list JupyterLab extension contains the exact same functionality and layout as the nbextension. After installation, it can be launched by opening the command palette on the left side and searching for Assignment List.

What’s Done

	All functionality

	Unit tests

	Styling

What’s not Done

	Could improve styling if wanted, but not necessary.

	The modals from validate assignment could use some better styling. Make styling of modals between assignment list and validate assignment consistent.

	Contain the bootstrap CSS. It is affecting the styling of elements outside of the extension.

Code

Files

	index.ts

	Attaches the UI to the main work area

	assignmentlist.ts

	Contains all the logic necessary to display the assignments.

	handlers.py

	Defines the backend of the extension.

	Uses the nbgrader ExchangeList, ExchangeFetchAssignment, ExchagneFetchFeedback, and ExchangeSubmit classes.

Classes

	AssignmentList

	
	Used to load and display the list of released, downloaded, and submitted assignments.

	Assignment

	
	Creates the rows for each assignment. Each row consists of a link, a span element to display the name of the course, and a button.

	Submission

	
	Makes a submission row which consists of the timestamp and a link to a feedback file if there is any.

	Notebook

	
	Creates a row for each notebook in an assignment. The name of the notebook is a link to open the notebook and each row also contains a button to validate the notebook (run the tests for the notebook).

	CourseList

	
	Used to load and display the course dropdown.

	When you click on a course it switches to to display the assignments for that course.

[image: ../_images/assignment_list.png]

Create Assignment

In Jupyter Notebooks, the extension put the UI in the cell toolbars. JupyterLab does not have cell toolbars, so we had to decide where to put the interface. We decided on a side panel which shows the nbgrader assignment information for the active notebook.

What’s Done

	Everything (extension, styling, tests, etc.)

What’s Not Done

	Nothing

Code

Files

	index.ts

	Attaches the UI to a side panel.

	extension.ts

	Contains the UI elements.

	model.ts

	Contains the logic which acts as an intermediary between the UI and the notebook cell metadata.

Classes

	CreateAssignmentWidget

	
	A container for the UI, which can theoretically be attached to any widget, not just a side panel

	Listens to determine which notebook is the current notebook

	Shows the NotebookWidget for the current notebook

	NotebookWidget

	
	Contains the UI associated with a notebook

	Has a NotebookHeaderWidget at the top and a NotebookPanelWidget which takes up the remaining space

	NotebookHeaderWidget

	
	Currently, only contains the total points for the assignment

	NotebookPanelWidget

	
	Contains a list of CellWidgets to show the assignment information for each cell

	Listens to changes in the notebook cell list

	Adds, removes, reorders, or highlights CellWidgets to synchronize with the notebook

	CellWidget

	
	Contains the UI showing the nbgrader assignment information for one cell

	Reads and writes nbgrader data in the cell metadata

[image: ../_images/create_assignment.png]

Course List

Same functionality and layout as the course list nbextension. After installation, it can be launched by opening the command palette on the left side and searching for Course List.

What’s Done

	All functionality is there

	Unit tests

	Some styling

What’s Not Done

	Could use more styling

Code

Files

	index.ts

	Attaches the UI to the main work area.

	courselist.ts

	Contains all the logic necessary to display the courses.

	handers.py

	Defines the backend of the extension.

Classes

	CourseList

	
	Loads and displays the list of courses.

	The name of each course is a link to the formgrader for that course.

[image: ../_images/course_list.png]

Formgrader

No work has been done on formgrader. This extension is very different from the others since it is complex and has a stand-alone interface.

What’s Done

	Nothing

What’s Not Done

	Everything

Possible Plan

	Add launcher and/or command palette entry

	Open formgrader UI in the main area

	Edit appropriate hyperlinks in the UI to open items in JupyterLab instead of Jupyter

Validate Assignment

What’s Done

	All functionality

	Unit tests

	Some styling

What’s Not Done

	Styling

	The modals could use some better styling.

	Make styling of modals between assignment list and validate assignment consistent.

[image: ../_images/validate_assignment.png]

 Index

Index

_images/create_assignment.png
C File Edit View Run Kernel

Tabs Settings Help

W Untitled.ipynb X Total points: 6

B+ X OB » = v Validate Python3 O g
[1]: a i
[1]: assert True &
P) Type: Autograded tests v %
1 hi El
ID: | cell-d0d5b06edffb6343
assert True ——
print('asdf' + 3) Points: 2
print('hi")
hi [4]: a
assert False
print(‘asdf' + 3) Type: Autograded tests v
print('hi")
ID: | cell-d0d5b06edffb6344
AssertionError Traceback (most recent call last) Points: 2
<ipython-input-2-1b799d385e52> in <module>
----> 1 assert False
2 print('asdf' + 3) J—
3 print(‘hi') IA1E &
AssertionError: Type: Autograded tests v
EEEE (Rt ID: | cell-dodsbo6edffcs344
Points:
[l
Type: - 2
0 2 {8 Python 3| Disconnected Mode: Command @ Ln1,Col 1 Untitled.ipynb

_images/er.png
users
id [TEXT]

courses | 0.N
_id [INTEGER]
id [TEXT]

alembic_version

version_num [VARCHAR(32)]

instructor_assoc_table
left_id [TEXT]

right id [TEXT]

first_name [TEXT]

last_name [TEXT]

email [TEXT]

student_assoc_table
left_id [TEXT]

right id [TEXT]
first_name [TEXT]
last_name [TEXT]

email [TEXT]

(0:1\) assignments
_id [INTEGER]

course_id [INTEGER]
due [TIMESTAMP]

id [TEXT] 0.N

(0.1,
submissions
_id [INTEGER]
assignment id [INTEGER] | submission_files_assoc_table
timestamp [TIMESTAMP] | *~ (0.1} (7 a [TEXT]
student_id [TEXT] 0N right_id [INTEGER]
0,1f ot
01 a0
, files e feedback_files_assoc_table
_id [INTEGER] 0.N left_id [TEXT]
filename [TEXT] [10.1} right id [INTEGER]
checksum [TEXT]
actual_name [TEXTT| 0 ==~
<z [INTEGER] (0.1} |assignment_files_assoc_table

left_id [TEXT]

right_id [INTEGER]

_static/comment-bright.png

_images/validate_assignment.png
Validation Results
The following cell failed:

assert True
print('asdf' + 3)
print('hi")

Traceback (most recent call last
<ipython-input-2-e85495fa@lcl> in <module>

1 assert True
----> 2 print('asdf' + 3)
3 print('hi")

: must be str, not int
The following cell failed:

assert False
print('asdf' + 3)
print('hi')

Traceback (most recent call last)

<ipython-input-3-1b799d385e52> in <module>

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/assignment_list.png
File Edit View Run

O,

assignment list
) g

NBGRADER

O Assignment List

o Mo &

Kernel Tabs Settings Help

Assignments X
Released, downloaded, and submitted assignments for course: math

Released assignments

‘here are no assignments to fetch.

Downloaded assignments
assignment1»
ps1»

test1»

Submitted assignments
psi

2020-05-28 02:29:00.101881 UTC

v

math

math

math

math

Q

Fetch Feedback

Assignments

P

_images/course_list.png
(@)

File Edit View Run

Kernel Tabs Settings Help

Course List|

. 4 Launcher

NBGRADER

Course List

Available formgraders [& |

math

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 nbgrader Integration with JupyterHub and Kubernetes

 		
 Preface

 		
 Intended Audience

 		
 Text Conventions

 		
 Acknowledgments

 		
 Related Documentation

 		
 Project Overview

 		
 Background

 		
 Goals

 		
 Features

 		
 Future Application

 		
 Installing

 		
 Installing on a Z2JH Cluster

 		
 Installing ngshare

 		
 Installing ngshare_exchange

 		
 Intalling in a Regular JupyterHub Environment as a Managed Service

 		
 Installing ngshare

 		
 Installing ngshare_exchange

 		
 Intalling as an Unmanaged Service

 		
 Installing ngshare

 		
 Installing ngshare_exchange

 		
 Uninstalling

 		
 Uninstalling ngshare

 		
 Uninstalling ngshare_exchange

 		
 Upgrading

 		
 Upgrading ngshare

 		
 Upgrading ngshare_exchange

 		
 Command Line Arguments

 		
 Regular Arguments

 		
 –database PATH_TO_DATABASE

 		
 –storage PATH_TO_STORAGE

 		
 –admins ADMIN1,ADMIN2,ADMIN3

 		
 Advanced Arguments

 		
 –debug

 		
 –no-upgrade-db

 		
 –jupyterhub_api_url CUSTOM_API_URL

 		
 –prefix PREFIX

 		
 –vngshare

 		
 –host BIND_HOST and –port BIND_PORT

 		
 Extra Features

 		
 Welcome Page

 		
 Debug Actions

 		
 Dump Database

 		
 Clear Database

 		
 Initialize with Test Data

 		
 Health Endpoint

 		
 vngshare

 		
 Notes for Administrators

 		
 Admin Users

 		
 User Name Reuse

 		
 Race Condition

 		
 Storage

 		
 Database Upgrade

 		
 Database Backup

 		
 Removing Semantics

 		
 Internal Server Error

 		
 Limitations

 		
 Notes for Instructors

 		
 Course Creation

 		
 Managing Students

 		
 Configuring nbgrader

 		
 Using Formgrader

 		
 Course Management

 		
 Admin Only Commands

 		
 Creating Courses

 		
 Adding/Updating Instructors

 		
 Removing Instructors

 		
 Instructor Commands

 		
 Adding a Single Student

 		
 Adding Students in Bulk

 		
 Removing Students

 		
 Demo

 		
 Creating Course

 		
 Adding Students

 		
 Releasing Assignment

 		
 Doing Assignment

 		
 Grading Assignment

 		
 Viewing Feedback

 		
 Reporting Bugs

 		
 Frequently Asked Questions

 		
 Do I need to backup database?

 		
 Will attackers be able to clear ngshare database?

 		
 Change Log

 		
 0.5.1

 		
 0.5.0

 		
 APIs Introduction

 		
 Definitions

 		
 Admin User

 		
 Assignment Name

 		
 Checksum

 		
 Course Name

 		
 Directory Tree

 		
 Instructor ID

 		
 Notebook Name

 		
 Student ID

 		
 Timestamp

 		
 Request and Response Format

 		
 Requests

 		
 GET Example

 		
 POST Example

 		
 Response

 		
 Success Example

 		
 Error Example

 		
 Authentication

 		
 ngshare Authentication

 		
 GET Example

 		
 POST Example

 		
 vngshare Authentication

 		
 GET Example

 		
 Post Example

 		
 Course APIs

 		
 /api/courses: Courses

 		
 GET /api/courses

 		
 /api/course: Course

 		
 POST /api/course/<course_id>

 		
 DELETE /api/course/<course_id>

 		
 /api/instructor: Course Instructor Management

 		
 POST /api/instructor/<course_id>/<instructor_id>

 		
 GET /api/instructor/<course_id>/<instructor_id>

 		
 DELETE /api/instructor/<course_id>/<instructor_id>

 		
 /api/instructors: List Course Instructors

 		
 GET /api/instructors/<course_id>

 		
 /api/student: Student Management

 		
 POST /api/student/<course_id>/<student_id>

 		
 GET /api/student/<course_id>/<student_id>

 		
 DELETE /api/student/<course_id>/<student_id>

 		
 /api/students: List Course Students

 		
 POST /api/students/<course_id>

 		
 GET /api/students/<course_id>

 		
 Assignment APIs

 		
 /api/assignments: Course Assignments

 		
 GET /api/assignments/<course_id>

 		
 /api/assignment: Fetching and Releasing an Assignment

 		
 GET /api/assignment/<course_id>/<assignment_id>

 		
 POST /api/assignment/<course_id>/<assignment_id>

 		
 DELETE /api/assignment/<course_id>/<assignment_id>

 		
 /api/submissions: Listing Submissions

 		
 GET /api/submissions/<course_id>/<assignment_id>

 		
 GET /api/submissions/<course_id>/<assignment_id>/<student_id>

 		
 /api/submission: Collecting and Submitting a Submission

 		
 POST /api/submission/<course_id>/<assignment_id>

 		
 GET /api/submission/<course_id>/<assignment_id>/<student_id>

 		
 /api/feedback: Fetching and Releasing Submission Feedback

 		
 POST /api/feedback/<course_id>/<assignment_id>/<student_id>

 		
 GET /api/feedback/<course_id>/<assignment_id>/<student_id>

 		
 Project Structure

 		
 ngshare

 		
 Python scripts

 		
 Unit tests

 		
 HTML and JS

 		
 Favicon

 		
 Database

 		
 Alembic

 		
 Version Number

 		
 Continuous Integration

 		
 Documentation

 		
 Deployment

 		
 Testing

 		
 ngshare_exchange

 		
 Decisions

 		
 Technologies Employed

 		
 Backend

 		
 Database

 		
 Progamming Language

 		
 Project Management

 		
 Race Condition

 		
 Database Update

 		
 Developer Installation

 		
 Install from GitHub

 		
 Run Installed ngshare

 		
 Run ngshare without Installation

 		
 Run vngshare

 		
 Run vngshare from Installed ngshare

 		
 Run vngshare without Installation

 		
 vngshare

 		
 Install

 		
 Default Behavior

 		
 Development History

 		
 Historical Project Structure

 		
 Development

 		
 Stand-Alone Mode

 		
 Unit Testing

 		
 Coverage

 		
 Code Formatting

 		
 Contributing

 		
 Database Structure

 		
 Tables

 		
 Allocation Tables

 		
 Assignment State

 		
 Entity Relationship Diagram

 		
 Current Entity Relation Diagram

 		
 Migration with Alembic

 		
 Upgrade Database

 		
 Create New Version

 		
 Reference

 		
 Update History

 		
 Documentation

 		
 Documentation Formatting

 		
 Deployment

 		
 Glossary

 		
 Contact Information

 		
 Team Members

 		
 Clients

 		
 Jupyter Community

 		
 Deployment

 		
 Technology Survey

 		
 The Problem

 		
 Alternative Solutions

 		
 hubshare

 		
 NFS

 		
 Kubernetes Persistent Volume Claim

 		
 ngshare

 		
 Pros

 		
 Cons

 		
 Requirements

 		
 User Stories

 		
 Prototyping code

 		
 Technologies Employed

 		
 Backend

 		
 Database

 		
 Progamming Language

 		
 Project Management

 		
 System Architecture Overview

 		
 Legal & Social Aspects

 		
 Porting nbextensions to JupyterLab

 		
 Assignment List

 		
 What’s Done

 		
 What’s not Done

 		
 Code

 		
 Create Assignment

 		
 What’s Done

 		
 What’s Not Done

 		
 Code

 		
 Course List

 		
 What’s Done

 		
 What’s Not Done

 		
 Code

